Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anaerobe ; 68: 102297, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33212292

RESUMO

Biogas has the potential to contribute to some of the most urgent issues of the energy transition, including mobility, energy storage, and grid stability. Flexibilization has been discussed as a means to improve the economics of biogas production, ideally restricting the production of electricity to times of strong need. Here the possibility of demand-driven, flexible biogas production is investigated, which saves substrates and storage capacity, while still enabling control over the production of electricity. Effects of different flexible feeding regimes were tested in a continuously operated 200 L reactor. After a period of 300 days under steady conditions (6.4 kg feed m-3d-1), varying flexible feeding patterns were applied over the next 700 days. Biogas production, volatile organic acid concentrations, and microbial dynamics were documented. Reduction of feeding resulted in reducing the gas production by up to 80% within a day. By increasing the feed, gas production could rapidly be reinitiated at similar levels as before even after fasting periods of up to 22 days. CH4-contents of the produced biogas were nearly constant over the investigation period. As a response to the flexible feeding, a reorganization of the microbial community was observed, which came to an end after 800 days and then was no longer affected by further changes in the feeding patterns or the substrate composition. Dominating archaea were of the order Methanosarcinales. During the experiment, representatives from the class Methanosaetaceae replaced representatives from the class Methanosarcinaceae.


Assuntos
Archaea/metabolismo , Gases/metabolismo , Microbiota , Anaerobiose , Archaea/classificação , Archaea/genética , Archaea/isolamento & purificação , Reatores Biológicos/microbiologia , Digestão , Metano/análise , Metano/metabolismo , Esgotos
2.
AMB Express ; 6(1): 53, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27485518

RESUMO

Commercial biogas production takes place by complex microbial communities enclosed in controlled "technical ecosystems". Once established, the communities tend to be resilient towards disturbances, although the relative abundance of their members may vary. The start-up phase, during which the community establishes itself, is therefore decisive for the later performance of the reactor. In this study, we followed the first 240 days of a standard agricultural energy crop digester consisting of a 400 m(3) plug flow fermenter and a 1000 m(3) agitated post digester, operated at 40-45 °C. The feed consisted of corn and later grass silage augmented by ground wheat. Changes in both the eubacterial and methanogenic archaeal communities were followed by automated ribosomal intergenic spacer analysis (ARISA). In addition the copy number of the methyl-coenzyme reductase A (mcrA)-genes found in all known methanogens were followed by quantitative PCR, while selected samples from two phases-one early, one late-of the community structure development were subjected to high throughput sequencing. Biogas volume and composition (CH4, CO2, H2, H2S, O2), pH, ammonia-N, and volatile fatty acids (VFA), were measured as part of the routine process control. VFA/TIC values were calculated on this basis. Whereas the total gas production of the plant established itself at about 2500 m(3) biogas per day within the first months, the composition of the microbial communities showed distinct spatial and temporal differences over the investigated time period. Absolute values for DNA isolation procedures are difficult to certify, hence comparative results on community structures obtained using standardized ARISA with identical primers are of value. Moreover, ARISA patterns can be statistically analyzed to identify distinct subgroups and transitions between them as well as serial correlations. Thereby the microbial community and its structural development can be correlated with statistical relevance to changes in operational (feed) and process parameters (pH-value, biogas composition). In particular when augmented by deep sequencing data of judiciously chosen samples, this allows a hitherto unknown level of insight into the performance of technical biogas plants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...